University of Saskatchewan Department of Electrical and Computer Engineering EE 241 - Introduction to Electric Power Systems Midterm Examination February 13, 2019

Instructor: S.O. Faried Duration: 2 hours

1. The following four loads are connected in parallel and supplied from a single-phase 600 V, 60-Hz source:

Load A: 20 kVA, p.f. 0.5 lagging Load B: 10 kW, p.f. 0.9 leading Load C: 20 kVA, 12 kVAR lagging

Load D: 10 kW, 10 kVA

- (a) Draw the power triangle of the total load indicating the values of P, Q, S and the phase angle ϕ .
- (b) Determine the kVAR of a capacitor installed to improve the power factor to 0.95 lagging.
- (c) What is the value of the capacitor capacitance in μ F.

(7 Marks)

2. A three-phase, **three-wire**, 208 V, ABC system supplies a Y-connected load in which $Z_A = Z_B = Z_C = 10 \angle 30^{\circ} \Omega$ and a single-phase load $Z_{AB} = 30 \angle 30^{\circ} \Omega$ as shown in Figure 1. Find the wattmeter reading.

You are at the wrong place. I am not Figure 1

Figure 1.

(6 Marks)

- 3. A three-phase, **three-wire**, 380 V, ABC system supplies a Y-connected load of $Z_A = 10 \angle 0^{\circ} \Omega$, $Z_B = 15 \angle 60^{\circ} \Omega$, $Z_C = 10 \angle -30^{\circ} \Omega$ through a three-phase cable with impedance $Z_{Cable} = 1 \angle 75^{\circ} \Omega$ as shown in Figure 2. Find:
- (a) The load phase voltages V_{LA} , V_{LB} , V_{LC} . Express the values in polar form $(Magnitude \angle angle^{\circ})$.
- (b) The sum of the line-to-line voltages at the load $(V_{LAB}, V_{LBC}, V_{LCA})$.
- (c) The total active power loss in the cable.

Figure 2.

(7 Marks)

$$P = |S| \cos q$$

$$Q = |S| \sin q$$

$$\frac{Q}{P} = \tan q$$
 $\frac{Q}{P} = \cos q$

Load	P,KW	Q , KVAR
A	10	17.3205
В	10	-4.8432
C	16	12
D	10	0

Load B:
$$\phi = \cos^{3} \circ \cdot 9 = 25.8419^{\circ} \Rightarrow |9| = \frac{P}{\cos \varphi} = 11.1111 \text{ VA}$$

$$Q = |9| \sin \varphi = \text{KVAR}$$

$$Load C: 12 = 20 \sin \varphi \Rightarrow \varphi = 36.8699^{\circ}$$

$$P = 20 \cos \varphi = \frac{P}{2} = \frac{11.1111 \text{ VA}}{2000}$$

$$P_T = 46 \text{ KW}$$
 $Q_T = 24.4773\text{KVAR}$
 $d = 28.0181^\circ$
 $|S_T| = \sqrt{(46)^2 + (24.477)^2} = 52.1027 \text{ KVA}$

$$Q cap = \frac{|V|^2}{|X_c|}$$

$$9357.8312 = \frac{(600)^2}{|X_c|}$$

Convert the Y to
$$\Delta \Rightarrow Z_{\Delta} = 1013^{\circ} + 1013^{\circ} + \frac{1013^{\circ}}{1013^{\circ}}$$

 $Z_{\Delta} = 3013^{\circ}$ 12

$$V_{AB} = \frac{208 \angle 0^{\circ}}{V}$$

$$V_{BC} = \frac{208 \angle -120^{\circ}}{V}$$

$$V_{CA} = \frac{208 \angle 120^{\circ}}{15 \angle 30^{\circ}} = \frac{208 \angle 0^{\circ}}{15 \angle 30^{\circ}} = 13.8667 \angle -30^{\circ}$$

$$I_{AB} = \frac{V_{AB}}{15 \angle 30^{\circ}} = \frac{208 \angle -120^{\circ}}{15 \angle 30^{\circ}} = 6.9333 \angle -150^{\circ}$$

$$I_{CA} = \frac{208 \angle 120^{\circ}}{30 \angle 300} = 6.9333 \angle 90^{\circ}$$

$$A$$

$$I_{A} + I_{CA} = I_{AB} \Rightarrow I_{A} = I_{AB} - I_{CA}$$

$$I_{A} = 13.8667 \underbrace{1 - 3.^{\circ}}_{-3.9332} - 6.9333 \underbrace{1 .9.^{\circ}}_{-3.9332}$$

$$I_{A} = 18.3439 \underbrace{1 - 49.1065^{\circ}}_{A}$$

VAB = 208 L ° Reference

49.1065°

Wreading = | VAB | | IA | Cos VAB IA = 208 * 18.3439 Cos 49.1065°

Wreading = 2.4979 KW

$$Z_{AT} = 10 \angle 0^{\circ} + 1 \angle 75^{\circ} = 10.3042 \angle 5.3789^{\circ} \Omega$$

$$Z_{BT} = 15 \angle 60^{\circ} + 1 \angle 75^{\circ} = 15.968 \angle 60.9287^{\circ} \Omega$$

$$Z_{CT} = 10 \angle -30^{\circ} + 1 \angle 75^{\circ} = 9.789 \angle -24.3371^{\circ} \Omega$$

$$V_{AB} = 380 \angle 0^{\circ} V$$

$$V_{BC} = 380 \angle -120^{\circ} V$$

$$V_{AB} - Z_{AT} I_{I} - Z_{BT} I_{I} + I_{2} Z_{BT} = 0$$

$$V_{AB} = I_{I} (Z_{AT} + Z_{BT}) - I_{2} Z_{BT}$$

$$V_{BC} - I_{2} Z_{BT} - I_{2} Z_{CT} + I_{I} Z_{BT} = 0$$

$$\begin{bmatrix} 23.3946 & 39.6316^{\circ} & -15.968 & 60.9287 \end{bmatrix} = \begin{bmatrix} 1 \\ 380 & 0^{\circ} \end{bmatrix}$$

$$= \begin{bmatrix} -15.968 & 60.9287^{\circ} & 19.4063 & 30.749 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 380 & 0^{\circ} \end{bmatrix}$$

$$I_1 = \frac{\Delta_1}{\Delta}$$
, $I_2 = \frac{\Delta_2}{\Delta}$

$$\Delta_1 = \frac{380 \, 20^{\circ}}{\Delta_1}$$

$$\Delta_1 = \frac{380 \, 20^{\circ}}{\Delta_2}$$

$$\Delta_1 = 9,564.5156 2 - 8.62640$$

$$D_2 = \frac{23.3946 \sqrt{39.6316^{\circ}}}{-15.968 \sqrt{60.9287^{\circ}}} \qquad 380 \sqrt{-120^{\circ}}$$

$$I_A = 26.8459 L - 44.95820$$
 A

$$P_{1055} = (26.8459)^{2} * 0.2588 + (15.1967)^{2} * 0.2588 + (15.7923)^{2} * 0.2588$$

LLBC = VLB - VLC = 367.4557 [-122.39620

VLCA = VLC - VLA = 369.8295 [114.3424° V

VLAB + VLBC + VLCA =0

The sum of the line-to-line voltages is always Zero (balanced or unbalanced) load